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Summary: The development of reliable in vitro assays that could allow the
quantitation and characterization of anti-donor alloimmune responses has
always been a goal in clinical transplantation, both to predict presensitiza-
tion to the transplanted tissue and to be able to identify rejection without
resorting to more invasive tests. With recent development in our under-
standing of transplantation biology and therapeutics, there is a real expect-
ation that these tests may be used to identify tolerance as much as to predict
rejection. The traditional limiting dilution assays still have a contribution to
make and are being complemented by an array of tools, such as ELISpot,
flow cytometry-based techniques, and microarray analysis. The assays that
have been informative, to date, are discussed in this review. This informa-
tion will lead, at least, to a better understanding of how and when the
rejection process occurs. More interestingly, the objective is to apply this
information to evaluate tolerance-inducing strategies or to identify patients
that have become tolerant to their graft and can be weaned of immuno-
suppression. Of course sensitive, accurate and specific immunologic moni-
toring has applications well beyond the field of transplantation.

Introduction

The development of assays that allow us to monitor the current

state of an immune response is of interest for several reasons.

These assays have the potential to identify rejection without

resorting to invasive tests. Possibly more importantly, a reli-

able index of immune status could allow the customizing of

the prescription of immunosuppressive drugs. In some cases,

the identification of immunological tolerance would allow the

partial or complete cessation of immunosuppressants, a highly

desirable goal, given the morbidity and mortality associated

with long-term administration of such therapy. It is also clear

that such assays will bring with them a more complete under-

standing of the mechanisms underlying the generation of

tolerance and rejection, which will open the door to new

and better targeted therapeutic interventions aiming the

immune response in the desired direction.

Improving HLA matching

One of the major obstacles that has to be overcome in achiev-

ing organ and hematopoietic stem cell (HSC) transplantation is
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the immune response to the highly polymorphic human leuko-

cyte antigens (HLA) expressed by almost all nucleated cells

of the body. The application of faster and more precise tech-

niques for HLA typing has led to improved donor : recipient

matching with better clinical results. The effect of HLA match-

ing on clinical outcome varies greatly with the organ being

transplanted. The HLA effect is most pronounced in allogeneic

HSC transplantation; whereas in the case of liver transplant-

ation for autoimmune disease, donor matching might actually

be detrimental (1). In renal transplantation, the benefits of

HLA-A, -B, and -DR matching are evident both for long-term

and in the early post-transplant period (2). Recently, interest

has focused on strategies to define acceptable mismatches,

particularly in highly sensitized patients (3, 4). These

approaches have met with variable success (5).

Even with modern high resolution typing, the effect of a set

of HLA mismatches cannot be completely quantitated. Like the

beasts in Animal Farm, not all mismatches are equally undesir-

able. Accordingly, much interest has focused on quantitating

the immune response, in particular donor–recipient mis-

matches, analogous to the well-defined Ir gene effects identi-

fied in inbred mice. Such work is dependent on the availability

of reliable functional tests of the immune response. Moreover,

it has the potential not only to allow the avoidance of par-

ticularly immunogenic combinations but also to permit the

use of certain less immunogenic mismatches, which might

otherwise deny access of a particular individual to a significant

number of organs that become available.

Managing the transplant recipient

Monitoring the effector responses to allogeneic stimulation

may help us understand the mechanisms that result in graft

rejection. If assays become available that are able to identify

key steps in the process, they might ultimately be used as

predictors of potentially detrimental events, prior to their

clinical manifestation. This ability would allow intervention

at a much earlier stage in the rejection process. Increased anti-

donor responses have been measured in association with rejec-

tion in solid organ transplantation (6–8), but these results

have not been consistent (9, 10). No large prospective studies

have been conducted that evaluate clinically useful anti-donor

responses, probably due to the lack of definition of an assay

that can be conducted easily in a large number of patients, that

requires an acceptably small volume of blood, and that can be

repeated on several occasions.

Advances in the efficacy of immunosuppression over the

past two decades have led to a considerable improvement in

the short-term survival of organ transplants. Not withstanding

this, almost all transplanted patients have to endure immuno-

suppression for the rest of their lives. Long-term immuno-

suppressive drug treatment is associated with significant

morbidity and mortality, mainly due to cardiovascular disease,

opportunistic infections, and an increased incidence of malig-

nancy. The ultimate goal in the management of transplanted

patients is the induction of donor-specific tolerance-antigen-

specific immunological unresponsiveness that is sustained in

the absence of chronic immunosuppression. There is an

increasing body of knowledge focused on how to specifically

control the immune responses that transplanted tissues initiate,

much of which is discussed in this issue. Immunological

monitoring could contribute by quantitating pro-inflammatory

and anti-inflammatory components of the anti-donor response.

If reliable assays were available, then it would be possible to

monitor the evolution of anti-donor responses in individual

patients and to determine the effectiveness of potentially

tolerogenic therapeutic strategies. As new drugs and biological

agents are introduced, such assays are vitally important in

determining whether they are ‘tolerance-promoting’ or

whether they impede the development of immune tolerance.

In patients who have already received a transplant, the assays

would be used to identify those in whom tolerance had

developed and, therefore, whose immunosuppression could

be weaned, avoiding much of its detrimental effects.

We can define immunological monitoring as the ex vivo

measurement of pro-inflammatory and anti-inflammatory

responses with clinical utility. Assays that conform to this

definition are the subject of this review.

To monitor responses in recipients of transplants, we are

mainly constrained to use lymphocytes from peripheral

blood. It could be argued that the responses in peripheral

blood do not necessarily mirror what will happen in the

tissue, as this area is regulated by infiltrating lymphocytes.

The nearest attempt to mirror a transplant situation in a

mouse model was provided by Orosz et al. (11), in an elegant

model of allograft using polyurethane sponges bearing allo-

geneic splenocytes. Donor-reactive cytotoxic T cells repre-

sented, at most, 0.2% of the cells recovered from these

allografts, which is similar to the frequencies found in limit-

ing dilution assays (LDAs) on peripheral blood from

completely mismatched human samples (12). Whilst

acknowledging that peripheral blood is not the ideal source

of information, these data argue that there are reasons to

believe it is good enough.

While individual kinetic assessment of alloreactivity by

different methods is feasible in human peripheral blood, in
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murine systems peripheral blood is a poor source of cells,

and, thus, individual kinetic assessment of alloreactivity in

the same individual can be challenging. The advantage in

murine systems is that transplantation groups can be bigger

and the variation from one individual to the next in

littermates is so little that the kinetic studies can be per-

formed on different individuals. Moreover, graft-infiltrating

lymphocytes are available for study, arguably providing the

most interesting source of information. Most of the assays

described below can be applied in rodents using the

appropriate reagents. However, most reports on animal

models of transplantation assess alloreactivity by graft survival,

and accurate quantitation of responses to donor antigens is

surprisingly scarce in the literature. Where in vitro assays

have been informative in rodent systems, we have included

these data.

It is important to comment on the practicalities of perform-

ing these assays before going further. Almost certainly, no

single assay will provide all the answers; rather, each will

analyze the immune response in a subtly different fashion.

Combining the results of several assays, it should be possible

to determine the fingerprint of the immune response at any

given time in a given individual.

Assays being developed for the immunological monitoring

of the alloimmune response can be broadly divided into the

antigen specific and the antigen non-specific. In the following

sections, we summarize the impact such assays have had in

clinical transplantation.

Antigen-specific assays to monitor responses to grafts

Several key concepts underlie the design of assays to monitor

anti-donor T-cell immunity. The first concerns the two path-

ways of the major histocompatibility complex (MHC) allo-

antigen recognition (Fig. 1). The ‘direct’ pathway requires the

recognition of intact donor MHC alloantigens on the surface of

donor cells. This pathway is responsible for the vigor of the

mixed lymphocyte reaction (MLR) and could be an important

driver of early acute transplant rejection. Direct pathway T-cell

activation is most efficiently achieved by donor bone marrow-

derived antigen-presenting cells (APCs) and, most import-

antly, tissue dendritic cells that migrate to draining lymphoid

tissue shortly after transplantation.

The second pathway of MHC allorecognition is referred to as

the ‘indirect’ pathway and involves the internalization, proces-

sing, and presentation of alloantigens as peptides bound to

recipient MHC molecules. The involvement of this pathway in

transplant rejection was first proposed on the basis of observa-

tions in a rat kidney transplant model (13, 14). Since those

early observations, others and we have provided evidence that

indirect allorecognition is an important driver of transplant

rejection (12, 15–18) and that the induction of tolerance in

this pathway is a requirement for long-term transplant survival

(19, 20).

The second key idea follows the emergence of regulatory

T cells that hold the anti-donor immune response in check.

The evidence for such cells is long-standing and comes from

adoptive transfer studies in which tolerance can be transferred

to a naı̈ve recipient by CD4þ T cells. Although the mechanisms

of this regulation remain incompletely understood, some pro-

gress has been made in defining the phenotype of this regu-

latory population. These cells have the same phenotype,

CD4þCD25þ, as the spontaneously arising population that

plays a vital role in the prevention of autoimmune disease.

Depletion of these CD4þCD25þ cells prevents the transfer of

tolerance by CD4þ T cells from a transplant-bearing animal

(21). Over the past decade, an ever-increasing body of data

both in human and animal models has established the role of

these and other naturally occurring regulatory cells (such as

natural killer T cells) in transplantation. We and others have

recently reviewed this phenomenon elsewhere (22, 23). The

picture of the mechanisms underlying the regulatory function

of these cells is far from completely defined, but it does appear

that this population of T cells plays an important role in the

maintenance of experimental (23) and possibly clinical (24)

transplantation tolerance.

A set of assays has been developed to quantify lymphocytes

recognizing donor antigen (Summarized at the end on

Table 1). The literature is dominated by the presentation of

antigens in the direct pathway, but modifications in the

culture conditions can be set in place for almost all the assays

to measure indirect pathway responses. The primary in vitro

response to the direct recognition of allogeneic molecules

emerges in the MLR. This reaction was first described in the

1960s and has been extensively used to study anti-donor

responses. However, in its conventional form, proliferative

MLR bulk cultures have very little predictive value in the

context of transplantation (25). For this reason, different

assays have been developed to obtain information of immuno-

logical responses that are of clinical utility. The special

challenge that measuring indirect pathway responses poses is

due to the low frequency of T cells with this specificity. In

many occasions, these responses are at or below the limit of

detection of the assays currently available. Therefore, all steps

taken to increase the sensitivity of the assays will help in our

ability to measure such responses.
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Limiting dilution assays

These assays, first described by Lefkovits (26), provide more

precise quantitation of immunity to a given stimulus and allow

the estimation of frequencies of antigen-specific cells partici-

pating in an immune response (27). They have become a

standard experimental tool for estimating frequencies of

defined function in a population of cells.

The technique consists of setting up multiple replicates of

graded dilutions of responder cells (usually patients’ unselected

peripheral blood lymphocytes or purified populations of CD4þ

or CD8þ cells) in wells containing a non-limiting stimulus (e.g.

donor stimulator cells). The readout from a particular well is

only considered positive if the measure chosen exceeds the

mean of controls (cultures lacking responder cells) by a factor

of three or more. The number of ‘negative’ wells at each

dilution of responder cells is determined. As the concentration

of the responder cells increases, the proportion of ‘negative’

wells will tend to be less; the relation between the number of

negative cultures and the mean number of precursors can be

plotted and a frequency obtained (27, 28).

Direct allorecognition

Indirect allorecognition

Class I Class II

Allogeneic APC

Allogeneic
cell Recipient

CD8+

Recipient
CD8+

Shed MHC
molecules

Recipient APC
take up and

process them

Peptides derived
from allogeneic MHC

Recipient
CD4+

Recipient
CD4+

Recipient APC

IL-2

Fig. 1. Direct and indirect pathways of

allorecognition. Direct pathway: intact
allogeneic MHC molecules are being
recognized by recipient’s T cells. CD8þ T
cells are activated by recognition of class I
molecules of the MHC complex, whereas
CD4þ cells are activated by the recognition
of class II molecules. Indirect pathway:
allogeneic MHC molecules are shed from the
graft, and these molecules are taken up and
processed by the recipient APCs. Peptides
derived from the allogeneic molecules are
presented in the context of the appropriate
restriction elements. Indirect pathway
CD4þ-specific T cells are able to provide
help to direct pathway specific CD8þ T cells.
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The ability of an LDA assay to predict the frequency of

precursors depends on the number of replicates and the num-

ber of responder cells added per dilution (29). An important

issue concerns the statistical method used to estimate the

unknown frequency. A number of methods are available to

estimate the effector frequency from the experimental data:

least squares, weighted mean, minimum chi-square, and max-

imum-likelihood. Extensive evaluation of the methods using

artificial data concluded that the last three were useful (30).

We have favored a maximum-likelihood-based method that

introduces bias reduction (31).

Different effector functions can be measured at different

time points. These include proliferation, cytokine secretion

(allowing determination of helper T-lymphocyte precursors

‘HTLp’), and cytotoxicity (allowing determination of cyto-

toxic T-lymphocyte precursors ‘CTLp’). In each case, each

well is ‘scored’ as positive or negative, and the frequency of

precursor cells able to mount such response can be, thus,

calculated.

LDA assays have been shown to be specific and reproducible

as a measurement of alloreactivity (32). Several refinements

have been described to increase the specificity and sensitivity

in the measurement of interleukin (IL)-2-secreting HTLp (33–

35) and CTLp frequencies (36). The production of different

cytokines can be measured in the presence of these cultures

such as interferon-g (IFN-g), IL-5, IL-4, IL-10, IL-13, or

tumor necrosis factor-a (TNF-a) (37, 38). A comprehensive

study of the kinetics of T helper (Th) 1 and Th2 cytokines

produced in alloresponses has recently been published (39).

The clinical utility of anti-donor cytokine HTLp frequency

measurement has been extensively demonstrated for IL-2

(40, 41) and less extensively for IFN-g (42, 43). Our labora-

tory has data to support the assertion that the frequency of

IFN-g-secreting CD8þ T cells is of value in measuring the

alloresponses to HLA class I disparities in unrelated donor

hematopoietic cell transplantation (Brookes and Lechler,

unpublished observations). There have also been claims that

raised frequencies of T alloreactive T cells secreting the Th2

cytokine, IL-4, are associated with a better outcome in heart

(44) and bone marrow transplantation (45). Further develop-

ment in the detection of cytokines may help in dissecting

mechanisms of tolerance and rejection.

In the context of bone marrow transplantation, there is vast

experience in the utility of CTLp frequency measurement to

predict graft-versus-host disease (GVHD) and survival (46–50).

In solid organ transplants, the data is less abundant, and

conflicting data have been reported in the ability of CTLp

measurement to predict rejection (51–53).

With our increasing appreciation of the importance of regu-

latory cells in the control of effector responses in the immune

system, the estimate of the frequency of T lymphocytes in

unfractionated cell populations poses a particular challenge.

This difficulty reflects the fact that there are no specific immuno-

phenotypic markers to identify regulatory cells, and, therefore,

they cannot be clearly isolated. Although coexpression of CD4

and CD25 does characterize a population of dedicated regul-

atory cells, activated CD4þ T cells have the same phenotype,

leading to difficulties particularly in the context of an active

immune response, such as transplant rejection. A unique

advantage of LDAs is that they allow the study of complex

responses at the population level, in that they can reveal the

presence of different populations of cells (such as regulatory

cells) that affect the response. These complex responses usually

manifest themselves as deviations from the single-hit kinetics

and graphically give ‘zig-zag’ curves when cell-dose is plotted

against fraction of negative cultures (54) (see Fig. 2 for further

explanation of this concept). Indeed, in LDA experiments if

CD4þCD25þ cells are added back to the CD4þCD25– fraction,

there is a dose-dependent effect between the percentage of

CD4þCD25þ cells and the deviation of the data from single-hit

kinetics (55). Mathematical models for the accurate estimation

of the frequencies of interacting cell types and of the param-

eters for their multi-hit interaction were developed by

Dozmorov et al. (56). Recently, a novel theoretical approach

for quantifying the frequency of suppressor cells in a respond-

ing population has been developed. This method is based also

on limiting dilution data modeling, and it allows the simultan-

eous estimation of the frequencies of both proliferating and

suppressor cells (57).

Albeit labor intensive and complex in data analysis, LDAs are

still a valuable tool to monitor donor-specific responses, par-

ticularly in the era of computerized calculations. Their speci-

ficity and relationship to clinical outcome has not been

surpassed by any other assay to date. Their ability to unmask

regulatory cell effects and the range of readouts that can be

measured will ensure its ongoing usefulness.

ELISpot

This assay is based on the detection of a cytokine produced by

single cells after stimulation with mitogens or antigens (58,

59). The secreted cytokine is detected by specific monoclonal

antibodies and revealed by the generation of discrete spots,

reflecting the number of cytokine-secreting cells (60) (Fig. 3).

Automated video image analysis has developed the potential

use of this assay (61). Presently, it is widely used in monitoring
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antigen-specific responses in the context of vaccine devel-

opment for infectious diseases (62), cancer (63), and auto-

immunity (64). In the context of transplantation, it has been

used to identify the presence of donor-specific T cells in

patients prior to surgery (65).

Several studies have found that ELISpot frequencies correlate

with LDA precursor frequencies of varied effector functions

(66), although in one it correlated only when a modification

was included in the LDA (67). The advantage of this assay over

the LDA is that results are not dependent on clonal expansion,

thereby excluding one potential variable. The assays are less

labor intensive and are shorter. The main disadvantage is that,

even with the aid of specialized imaging equipment, there is a

certain degree of subjectivity in the interpretation of results, as

a threshold for the size, intensity, and gradient of the spots are

user-defined. Comparison of results in different ELISpot read-

ers has not yet been performed. Standardization of parameters

that define a positive spot will be needed for reproducibility

across laboratories and readers. ELISpot has also been found to

be informative to assess direct and indirect allogeneic

responses in murine systems (16).

CFSE labeling and cell division

In the area of quantitative flow cytometry, fluorescent dyes are

being exploited to track lymphocyte migration and prolifer-

ation. Most notably, carboxyfluorescein succinimidyl ester

(CFSE), an intracellular fluorescent label that divides equally

between daughter cells, has been used to study cell division

(68, 69) (Fig. 4). Recently, a method was developed using this

dye to quantify alloreactive T-cell responses (70). A combin-

ation of LDA and CFSE labeling has also been described to

measure alloactivation in CD8 cells (71). Accurate quantitation

of dividing cells can be achieved by the use of internal stand-

ards such as microspheres that allow enumeration of absolute

cells as opposed to percentages (72). Using this enumeration

method, antigen-specific frequencies have been measured

with high sensitivity and reproducibility (Hernandez-Fuentes

MP, manuscript in preparation). The advantage of this

method, as with other flow cytometric methods, is that dif-

ferent phenotypically defined subsets of cells can be studied

simultaneously (73). The limit of detection of this method is

established by background proliferation and the number of

cells acquired; a higher sensitivity can be achieved if the

dividing cells can be identified by a surface marker.

The use of CFSE labeling to assess allogeneic responses has

been widely used in murine systems. A fundamental advantage

is that by adoptive transfer of CFSE-labeled specific responding

cells, enumeration of responses (70) and mechanisms of rejec-

tion and tolerance in vivo can be readily assessed (74). Not only

is enumeration available, but also issues of migration, localiza-

tion of lymphocyte activation, and antigen presentation now

can be addressed. Moreover, this technique also can be used to

determine kinetics of immune responses, to track proliferation

in minor subsets of cells, and to follow the acquisition of

differentiation markers or internal proteins linked to cell

division (75).

We have compared different methods to measure CD4

antigen-specific frequencies in healthy controls, and we have

found them to be stable over a short period of time. In a

mouse model specifically designed to compare the accuracy

of these alternative approaches to frequency estimation,

ELISpot was found to be marginally superior to LDA or CFSE

Cells/well

10 20 30 40

Ln(F)

Single-hit kinetics

LPC1

Two-frequency 
kinetics

Fig. 2. Single-hit and two-frequency kinetics in limiting dilution
assay. Single-hit and multiple-hit LDA curves are represented. An
experiment with only one population of cells responding gives a straight
line (single-hit kinetics, green line). An experiment where the population
of responding cells is complex gives the classic ‘humped’ curve (red
line). In this model, several assumptions need to be made to derive a
curve. First, at a given ratio of regulators-to-responder cells, there will be
suppression, but below this ratio suppression will not occur. Second, if
enough regulators are present, they too will be able to proliferate. If
studied in isolation, the responder population is represented by LPC1
(orange line), a single-hit kinetic where there are a small number of cells
per well will sharply decrease the number of wells ‘scoring negative’. In
isolation the regulatory population is represented by LPC2 (blue line); at
a low number of cells per well, the well still scores negative. As the
number increases, some cells proliferate under the influence of the other
regulators thus producing a curve. If the populations are mixed (red
line), at a low frequency the responders predominate, but as the number
of cells per well increases the regulatory cells can exert their suppressive
effect and more wells will start to score negative, hence the hump. The
wells will not score positive again until there are both enough regulators
to start proliferating and an excess of responders to prevent suppression.
Once this happens, the hump is overcome and the line tends towards a
straight line. The actual frequency of the two populations can be derived
from the gradients of LPC1 and LPC2.
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ELISpot

a

b

c

Negative

Positive

Fig. 3. ELISpot procedure. (A) Culture wells
are coated with the capture antibody and cells
are then added. (B) Cultures are incubated for
24–48 h, and the cytokine is produced by the
cells. Cells are then removed from the plate,
and the cytokine remains bound to the
antibody. (C) A detection biotinylated
antibody is then added, followed by a
conjugate of an enzyme with streptavidin. In
the final step, the substrate precipitates where
the secondary antibody was bound, forming
spots that correspond to cells producing the
cytokine.
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Fig. 4. Flow cytometry analysis of cell
division: carboxyfluorescein succinimidyl

ester (CFSE) labeling. Cells are labeled with
CFSE prior to culture, and with each division
cell fluorescence intensity halves. In T
lymphocytes, up to eight cell divisions can
accurately be distinguished. Applying
methods to calculate exact number of cells,
we can find out the number of precursors. By
relating precursors to the number of cells
seeded a frequency can be obtained. The
advantage of this method is that two
populations of cells can be studied
simultaneously, as long as they can be
identified with different surface markers.
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labeling and flow cytometry (Hernandez-Fuentes MP, manu-

script in preparation). Given the speed and relative ease of

ELISpot assays, it is clearly an attractive option.

Flow cytometric detection of cytokines

Flow cytometry methods to detect and measure cytokine pro-

duction by lymphocytes are emerging. The cytokine secretion

assay is defined by the creation of an artificial affinity matrix

on the cell surface that is specific for the secreted product of

interest. Once the matrix is added, the cells are allowed to

secrete for a defined time period and the secreted product is

‘captured’ in the matrix. The affinity matrix is generated by

attaching a bispecific antibody to the cell surface, i.e. an anti-

body that binds CD45 on lymphocytes will cover the surface of

the cell, and the second specificity will detect a cytokine, such

as IFN-g or IL-4. The secreted molecules bind to the affinity

matrix on the secreting cell and are subsequently labeled with

specific fluorescent or magnetic staining reagents (76) (Fig. 5).

This method has been shown to correlate with tetramer-bind-

ing numbers in CD8þ T cells, binding a melanoma-associated

peptide, Melan-A (77). However, in a study of healthy volun-

teers measuring responses to influenza peptides, this method

did not correlate with results obtained with ELISpot or intra-

cellular staining of cytokines (78).

Our experience and that of Asemissen (78) is that this assay

shows non-specific binding of the secondary anti-IFN-g anti-

body. Hence, background staining is often a problem, and the

‘noise-to-signal’ ratio leads to a lack of sensitivity. It was

designed to isolate functional cytokine-producing T cells spe-

cific for the stimulating antigen, and it has shown to be

successful, even when the frequency of starting antigen-

specific cells are very low (76).

An alternative flow cytometry-based cytokine detection

method involves the intracellular staining of cytokine in cells

(79). Specific activation procedures are always needed to be

able to detect cytokines, usually involving the addition of

inhibitors of intracellular transport (such as brefeldin or mon-

ensin) (80), which can limit the viability of the cells. This

method allows the individual characterization of large num-

bers of cells. With multiparameter staining, it can demonstrate

exclusive or mutual coexpression of different cytokines in

individual cells. It, therefore, allows the categorization of

T-cell subsets, such as Th1 or Th2, rather than just surface

markers. Frequencies calculated by this method have been

shown to correlate with the number of tetramer-binding

cells in human immunodeficiency virus (HIV) patients (67),

although in another study on patients with metastatic mela-

noma, such a correlation was not found (81). It has also been

demonstrated to correlate with the frequency obtained by

STEP 1
T Cells are

stimulated for 16
hours

STEP 2
By binding cell surface Ag

(CD45) bispecific Ab
localises secreted IFNHγ to

surface of secreting cell

STEP 4
STEP 4

Incubation 45 min.To
pick up secreted IFNγ

IFNγ PE detection antibody

Fig. 5. Flow cytometric analysis of
antigen-specific T cells: cytokine secretion

assay (cell surface affinity matrix
technology). Incubation steps are shown and
explained.
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ELISpot in responses to influenza peptides in healthy volun-

teers (78) and to exceed several fold the frequency obtained

by LDA using cytotoxicity as a readout in Epstein-Barr virus

and allogeneic responses (82).

Tetramer staining

First described by Altman and colleagues (83), these reagents

have revolutionized the visualization and quantitation of anti-

gen-specific T cells. It consists of four MHC–peptide com-

plexes linked covalently by a fluorochrome (83). The

increase in avidity caused by tetramerization allows consistent

binding to T cells (Fig. 6). Since their first description, the

range of available peptides and restriction elements has

increased rapidly and now includes HLA-class II molecules

(84, 85). They have proved to be clinically useful in the

monitoring of immunity to infectious diseases caused by

different viruses, such as HIV (86) or hepatitis-B virus (87).

In tumor immunology, they have been used both to study

tumor-specific CD8þ cells (88) and to monitor responses to

vaccination (81).

In several instances, it was noted that CD8þ T-cell frequen-

cies estimated by tetramer staining were substantially higher

than those calculated by conventional LDA using cytotoxicity

as the readout (67, 89). The likely explanation for this dis-

crepancy is that tetramer staining can detect naı̈ve, memory

and effector cells, which may be substantially expanded during

an active infection. In contrast, a conventional assay of CTLp

frequency requires in vitro clonal expansion, and effector cells

are not only incapable of such expansion but also tend to die

by apoptosis in prolonged culture (90).

The potential of MHC tetramers lies in the possibility of

monitoring peptide-specific T cells over time with very small

volumes of blood. In fact, recently, they have been used to

monitor minor histocompatibility (mH) antigen-specific

T cells in bone marrow recipients and have demonstrated an

association between the presence of functional cytotoxic

T-lymphocyte-specific for mH antigens and the occurrence

of GVHD (91). With the advent of class II tetramers, it should

now be possible to measure and detect anti-donor T cells with

‘indirect’ specificity.

Trans vivo delayed-type hypersensitivity (DTH)

A recent addition to the repertoire of immune reactivity that

are currently in use is the ‘trans vivo’ delayed-type hypersensi-

tivity (DTH) assay. In this assay, human peripheral blood

mononuclear cells (PBMCs) are injected with specific antigens

into either the footpad or the pinna of a mouse, and the

magnitude of the resultant swelling after 24 h is taken as an

index of the reactivity of these cells to that antigen. Carrodeguas

et al. (92) validated this technique for detecting responses to

Fluorochrome:
Allophycocyanin (APC)
or phycoerythrin (PE)

Tetramer formation
with Streptavidin

(4 binding sites for biotin)

BirA recognition
site

Biotin

β2m

BirA

enables biotinylation

HLA-class I

Fig. 6. Flow cytometry analysis of

determinant-specific T cells: tetramer-
staining. Purified class I MHC molecule-
peptide complexes are enzymatically
biotinylated by incubation with purified
BirA. The heavy-chain fusion protein is
folded in vitro in the presence of b2-
microglobulin. The complex is then
multimerized by mixing the biotinylated
protein with phycoerythrin- or
allophycocyanin -labeled streptavidin at
specific molar ratios. Multimeric peptide-
MHC complexes are able to bind more than
one T-cell receptor on a specific T cell and,
thus, have slower dissociation rates, which
allows the identification by flow cytometry
of T cells specific for the peptide-MHC
molecule complex.
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tetanus toxoid and cytomegalovirus. They determined that this

response was antigen-specific, that it depended on the pres-

ence of injected CD4þ T cells as well as human antigen-

presenting cells, and that it was not influenced by the presence

of an intact murine immune system. With respect to monitor-

ing the alloresponse, it has, hitherto, been of value only in

addressing indirect alloreactivity, because intact ‘stimulator’

PBMCs can also provoke swelling in the mouse, giving an

unacceptable noise-to-signal ratio. Using sonicated allogeneic

(but not autologous) PMBCs as stimulating antigens, recipi-

ents’ PBMCs could be demonstrated to generate an alloantigen-

specific response in the trans vivo DTH assay. It did not correlate

with the parallel humoral alloreactivity, suggesting that it was

measuring some other aspect of immune responsiveness.

This same group went on to apply this assay to transplant

patients, this time, using immunologically incompetent severe

combined immunodeficiency disease (SCID) mice (93). They

described four transplant recipients in whom all immunosup-

pression had been discontinued. Three of these patients, who

had prolonged drug-free graft survival, were shown to have

alloantigen-specific hyporesponsiveness in the trans vivo DTH

assay. By contrast, the fourth patient, who underwent delayed

graft rejection, had a strong alloantigen-specific trans vivo DTH

response. This assay proved sensitive to suppression in that

recall antigen responses could be inhibited in those patients

with alloantigen-specific hyporesponsiveness if recall and

alloantigen were coinjected. This group further characterized

the nature of the MHC alloantigen that was mediating this

process of ‘linked suppression’ as being an indirectly recog-

nized class I molecule (94). The precise nature of the cellular

interaction being measured in this assay remains unclear, but it

is certainly different from what is being assessed in a standard

in vitro MLR, because it was not possible to demonstrate linked

suppression in an in vitro assay using the same reagents with

which it had been demonstrated in the trans vivo assay (95). It is

also clear that donor-specific trans vivo DTH reactivity occurs

more commonly in renal transplant recipients than allosensi-

tization, as detected by the development of donor-specific

alloantibodies (96). Indeed, there is rather poor functional

correlation between these two indices of allosensitization in

transplant patients. It could be argued that an in vivo assay, such

as the trans vivo assay, might more closely represent what is

going on within the patient is a wholly in vitro assay. However,

this assertion remains to be validated in larger numbers of

patients in various clinical contexts.

Whilst this assay is attractive in that it offers something that

actually occurs in vivo, it is limited by a need to sacrifice

animals, with all the attendant problems. In addition, the

readout is a few millimeters of swelling and, as such, presents

a problem with quantitation. Nonetheless, it may provide a

useful measure, particularly of indirect pathway sensitization

and suppression.

Measurement of donor-specific alloantibodies

In the early days of transplantation, the presence of pre-

formed anti-HLA antibodies in recipient serum was recog-

nized as a prominent risk factor for episodes of acute allograft

kidney rejection (97), and their presence is still associated

with rejection or graft loss (98). Screening patients on trans-

plant waiting lists for such alloreactive antibodies is per-

formed to provide an estimate of the degree to which she

or he is sensitized to the graft. Historically, screening to

identify antibodies to HLA antigens has been performed

with a panel of HLA-typed lymphocytes in an assay that

detects complement-dependent cytotoxicity (CDC) against

certain HLA specificities. To increase sensitivity an anti-

human globulin step was introduced. This assay has served

the transplant community well for more than 30 years;

however, the need to maintain a panel of viable, HLA-typed

lymphocytes and questions of sensitivity and specificity have

prompted the development of newer assays.

Kao et al. (99) introduced the enzyme-linked immunosorbent

assay (ELISA) methodology using soluble HLA molecules

adsorbed onto plates. A patient’s serum can be tested for

the presence of immunoglobulin (Ig) G or IgM against the

adsorbed molecules. Flow cytometry-based techniques were

introduced in the early 1990s. These methods use either

donor T and B lymphocytes (FCXM) (100) or beads coated

with purified class I or class II molecules (Flow-PRA) (101).

Flow cytometry methods are 10–250-fold more sensitive

than CDC (102) and have proved to be reliable and reprod-

ucible (103). When ELISA and flow cytometry using Flow-

PRA beads were compared, the latter appeared to be the more

sensitive and specific. However, ELISA offers the advantage of

being more suitable for testing large numbers of samples in a

more time- and cost-effective manner (104). The advent of

these new techniques generated controversy; not all of the

studies found an association between a pretransplant-positive

FCXM and graft survival (105). In contrast, other studies

confirm the usefulness of these new techniques to predict

rejection or transplant failure (106, 107). A sensible

approach to the testing for the presence of pretransplant

antibodies could be to use a routine test and apply others to

confirm the presence or the specificity of the antibody to

evaluate risks (107).
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The relevance of the de novo appearance of post-transplant

antibodies has been thoroughly reviewed (98). Numerous

reports have been published that find an association between

the presence of anti-HLA antibodies and increased acute and

chronic rejection and, with them, decreased graft survival.

Hence, there are reasonable grounds to test for the presence

of anti-HLA in the post-transplant period. However, these

results should be interpreted with caution, as in all these

studies there is a percentage of patients with positive

anti-HLA antibodies whose graft continues to function (98).

Additionally, the presence of anti-donor antibodies prior to

transplantation might not always be an absolute contraindica-

tion to transplantation, because aggressive therapy has proven

to be successful, mainly in heart transplants (108). Moreover,

‘accommodation’ (the development of insensitivity of

antibody-mediated damage) of the graft has been shown to

develop and be beneficial (109).

In contrast with other assays, the detection of post-

transplant alloantibodies has frequently been performed to

assess mechanisms of rejection in rodent models, and it has

been particularly informative in models of chronic rejection in

rats (110–112) and mice (113).

Non-antigen-specific approaches to immunological

monitoring

All the assays described in the earlier part of this review have

studied the response of T cells to donor antigens. An alter-

native approach to determining the response of cells to antigen

is to determine their phenotype of surface markers or func-

tional state and tries to identify a pattern associated with a

particular clinical status. For example, much effort is currently

focused on identifying distinctive features of regulatory T cells.

At the level of cell-surface markers, such an approach has been

used for many years. Following immunosuppression with

anti-lymphocyte therapy, both polyclonal and monoclonal,

the absolute number of T cells, phenotyped by their ability

to rosette sheep erythrocytes or by the expression of CD3, has

been used as an index of the degree of immunosuppression.

More sophisticated approaches have been suggested in the

light of technological advances. In this section, we highlight

three of these.

Patterns of T-cell receptor usage

T-cell receptors are heterodimers of a and b chains, each of

which has a membrane-distal portion containing the antigen-

binding domain. This portion is coded by one of the series of

variable region (Va and Vb) gene segments. Within these

antigen-binding domains, each chain has three complementarity-

determining regions (CDRs) of which the third (CDR3) is the

most variable. Much attention has been given over recent years

to the pattern of T-cell receptor usage in different clinical

scenarios. Little clinical applicability has emerged from these

studies. However, as has been discussed above, our renewed

understanding of the development of regulatory cells has

given an additional impetus to considering whether the

presence of certain patterns of T-cell receptors could inform

us about the nature of the immune response taking place.

Soullilou’s group (114) has addressed patterns of T-cell recep-

tors in the context of transplantation. They have shown that the

pattern of Vb-gene usage in an alloimmune response is very

different from what is seen in the unperturbed immune system.

They looked at the T cells infiltrating 18 human grafts that had

been lost to chronic rejection and found a strong bias in Vb-gene

usage (114). In the same study, they found that 55% of Vb
families shared common and oligoclonal Vb–Cb rearrange-

ments, if the patients had acute rejection superimposed on the

chronic rejection. Two Vb genes showed a common Vb–Jb
rearrangement. In contrast, T-cells infiltrating grafts that showed

only chronic lesions showed an unaltered Gaussian-type CDR3

length distribution. Similarly, in a xenograft model in which

long-term survival of a hamster-to-rat cardiac graft was gener-

ated using cyclosporine and cobra venom factor; they found

that, when immunosuppression was discontinued, a Gaussian

pattern of CDR3 lengths rapidly changed to a much more

restricted pattern when the grafts began to be rejected (115).

Using a system that combines analysis of the CDR3 region

with a quantification of each Vb family mRNA within a T-cell

pool, known as T-cell landscape (TcLand), this group has

analyzed the T-cell receptor repertoire used, following direct

alloantigen presentation (116). They have shown that T-cell

interaction with MHC-mismatched APCs triggers the activation

of T cells with specific Vb families, regardless of their CDR3

regions (as seen in indirect recognition) but specific to the

combination being studied.

It may be that these patterns of Vb-gene usage and CDR3

length may contribute to the development of a ‘fingerprint’ of

tolerance. Regulatory T-cell clones characterized by the pres-

ence of an altered T-cell receptor repertoire have been impli-

cated in the tolerance that is induced by pregraft donor blood

transfusion (117, 118). In a model of infectious tolerance in a

rat cardiac allograft system, a unique pattern of CDR3 spectra-

typing was identified (119).

This approach is still some way away from clinical applic-

ability. However, direct correlations with functional states of
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interest have reawakened interest in this method, and it may

yet prove to be of significant prognostic value in transplant

recipients.

Microarray analysis

We are now able to use microchips to analyze the pattern of

expression of tens of thousands of genes in tissues, in a given

scenario. It is hoped that it will be possible to characterize the

genes whose expression contributes to a protective phenotype

and those which contribute to an aggressive one. This tech-

nology, although highly sophisticated, remains in its infancy

with respect to clinical application. However, with our under-

standing that the process of tolerance is an active one, it seems

likely that it will be associated with a pattern of activation of

certain genes.

Work has already begun in the transplant sphere. Sarwal

et al. (120) used a DNA microarray chip to try to establish a

pattern of gene expression within renal biopsy specimens that

was associated with acute rejection. They identified three

patterns that correlated with differences in cellular prolifer-

ation and patterns of cellular infiltrate on immunohistochem-

ical staining. Specifically, there was a striking association

between an infiltrate that included large numbers of CD20þ

B cells and both steroid resistance and graft loss. The power of

this technique is such that it will be surprising, if it does not

provide many more insights into the underlying biology of

transplantation and tolerance and, thereafter, the care of

patients.

Cytokine mRNA quantification by real-time polymerase chain

reaction

The above approaches will be particularly sensitive to all-or-

none phenomena; either a gene is or is not transcribed.

Clearly, to some extent, the phenomenon is the aggregate

effect of a number of different phenomena, and the popula-

tion of transplant recipients is more likely to represent a

spectrum of immunological responses rather than two discrete

populations. One implication of this range is that some appar-

ently tolerant individuals will be living on a knife-edge and

find it easy to have their tolerance broken. Alternatively, the

immune response of some people to their grafts may be easily

converted into tolerance. A sensitive approach to quantitative

assessment of the immune response using cytokines, the

molecular messengers of the immune response, is quantitative

real-time polymerase chain reaction (PCR).

Using fluorogenic molecules, it is possible to measure the

accumulation of product during PCR in a quantitative fashion.

Its use on cytokine mRNA has been well established. It remains

to be determined whether this measurement can be correlated

with functional status in the transplant recipient (121). These

methods have also been used in murine systems to measure

cellular immune responses (122).

The experience of immune monitoring in the transplant

setting

Different attempts at monitoring lymphocyte responses to

assess donor-specific immunity or tolerance have been pub-

lished using LDAs with different readouts (proliferation, cyto-

kine production, or cytotoxicity) in the transplantation

context. The largest clinically useful experience in immune

monitoring has been carried out in the context of hemato-

poietic cell transplantation from an unrelated donor for the

prediction of GVHD and also for donor selection. The need

was driven here by the lack of high-resolution tissue typing

techniques, and functional assays were critical up until 10

years ago. LDAs were initially applied to the measurement of

human alloreactive CTLp (32). The estimation of host-reactive

CTLp in peripheral blood of donors has been shown to be

predictive of acute GVHD and survival in a series of studies

(46–48, 50), but this finding has not been universal (123).

Host reactive IL-2 HTLp frequencies have been shown to

correlate with outcome in bone marrow transplant in identical

siblings (40, 124) and unrelated donors (47, 50, 125). In all

these studies, where the donor and the recipient share the

majority of HLA-molecules, it is assumed that both direct

and indirect responses are being detected simultaneously.

Functional assays will have a lasting role in bone marrow

transplantation, even in the era of high-resolution typing.

These assays can define permissible mismatches, and they

can be used to discriminate the less immunogenic donor in

the absence of a completely matched donor.

The experience in solid organ transplantation is less exten-

sive, though a renewed effort is underway to dissect mechan-

isms of tolerance and rejection. Direct pathway responses have

been the subject of a number of studies. Donor-specific cyto-

toxic T-cell hyporesponsiveness that develops sometime after

kidney (52), heart (44, 45, 126), or lung (10) transplantation

has been described. However, as before, this finding has not

been universal (53,127–129). Hyporesponsiveness of helper

T lymphocytes has also been described (126, 130, 131),

although conflicting data have been reported (132). In several

studies the strength of direct pathway anti-donor responses

correlated with rejection episodes and clinical status (7–9, 44,

131, 133) but not in others (52, 126, 130). Three groups
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have attempted to measure responses via the direct and the

indirect pathways in the same group of patients (12, 134,

135). The tentative conclusions from these studies were that

the direct pathway anti-donor response diminishes with time

after transplantation and that raised frequencies of T cells with

indirect anti-donor reactivity correlate with the presence of

chronic transplant rejection. If the indirect pathway is critical

in mediating transplant rejection, it follows that abolition of

the direct pathway alone will not achieve allograft tolerance.

Indeed, strategies that promote tolerance in the indirect path-

way should increase allograft survival, as has been demon-

strated in animal models (136).

What lies ahead

This area of research clearly has potential applications outside

the transplantation setting. Several other therapeutic strategies

will benefit from developments in this field. Vaccine effective-

ness both to infectious agents and malignancies are already

using some of the techniques described here.

In this era of increased opportunities to translate develop-

ments in basic immunology for the benefit of the transplant

patients, where tolerance-inducing strategies are being trans-

ferred from the bench to the bedside, it is of central importance

that the in vitro assays described here are improved to allow the

identification and perhaps even quantitation of tolerance. It will

be crucial to be able to differentiate this outcome from a lack of

response or assay insensitivity. With the variation in values that

is so commonly found with different assays, further clinical data

need to be gathered to identify which method or combination

of methods gives the most clinically informative frequencies.

No gold standard can be established as yet. For this reason, a

collaborative group in Europe and USA has been formed with a

view of finding the fingerprint of tolerance. Results from these

and other similar initiatives will provide information that will

be invaluable in the context of designing clinical trials of puta-

tively tolerance-promoting protocols and in guiding decisions

about drug weaning.

For too long, the clinical practice of immunology has not

had the power to quantitate its interventions in a straightfor-

ward way that has now become second nature to the cardiolo-

gist or the pulmonary physician. There is now reason to be

optimistic that this era of ignorance and paralysis may soon

come to an end.
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